Comparative Physiological and Proteomic Analysis Reveals the Leaf Response to Cadmium-Induced Stress in Poplar (Populus yunnanensis)
نویسندگان
چکیده
Excess amounts of heavy metals are important environmental pollutants with significant ecological and nutritional effects. Cdmium (Cd) is of particular concern because of its widespread occurrence and high toxicity. We conducted physiological and proteomic analyses to improve our understanding of the responses of Populus yunnanensis to Cd stress. The plantlets experienced two apparent stages in their response to Cd stress. During the first stage, transiently induced defense-response molecules, photosynthesis- and energy-associated proteins, antioxidant enzymes and heat shock proteins (HSPs) accumulated to enhance protein stability and establish a new cellular homeostasis. This activity explains why plant photosynthetic capability during this period barely changed. During the second stage, a decline of ribulose-1, 5-bisphosphate carboxylase (RuBisCO) and HSP levels led to imbalance of the plant photosynthetic system. Additionally, the expression of Mitogen-activated protein kinase 3 (MPK3), Mitogen-activated protein kinase 6 (MPK6) and a homeobox-leucine zipper protein was higher in the second stage. Higher expression of caffeoyl-CoA O-methyltransferase (CCoAOMT) may regulate plant cell wall synthesis for greater Cd storage. These genes may be candidates for further research and use in genetic manipulation of poplar tolerance to Cd stress.
منابع مشابه
Comparative Physiological and Proteomic Analyses of Poplar (Populus yunnanensis) Plantlets Exposed to High Temperature and Drought
Plantlets of Populus yunnanensis Dode were examined in a greenhouse for 48 h to analyze their physiological and proteomic responses to sustained heat, drought, and combined heat and drought. Compared with the application of a single stress, simultaneous treatment with both stresses damaged the plantlets more heavily. The plantlets experienced two apparent response stages under sustained heat an...
متن کاملA LEA Gene Regulates Cadmium Tolerance by Mediating Physiological Responses
In this study, the function of a LEA gene (TaLEA1) from Tamrix androssowii in response to heavy metal stress was characterized. Time-course expression analyses showed that NaCl, ZnCl(2), CuSO(4), and CdCl(2) considerably increased the expression levels of the TaLEA1 gene, thereby suggesting that this gene plays a role in the responses to these test stressors. To analyze the heavy metal stress-t...
متن کاملShoot–root defense signaling and activation of root defense by leaf damage in poplar1
Shoot–root systemic defense signaling of hybrid poplar (Populus trichocarpa Torr. & A. Gray Populus deltoides Bartr. ex Marsh.) was investigated with molecular techniques to extend existing knowledge of poplar defense. Treatment of roots with methyl jasmonate demonstrated that transcripts of PtdTI3, a poplar trypsin inhibitor and marker of poplar defense responses, can be induced in poplar root...
متن کاملCadmium phytoextraction potential of poplar clones (Populus spp.).
Biomass production, leaf number and area, photosynthetic and dark respiration rates, leaf concentration of photosynthetic pigments, nitrate reductase activity, as well as cadmium concentrations in leaves, stem, and roots were measured in poplar clones PE 4/68, B-229, 665, and 45/51. Plants were grown hydroponically under controlled conditions and treated with two different cadmium (Cd) concentr...
متن کاملTranscriptional profiling analysis in Populus yunnanensis provides insights into molecular mechanisms of sexual differences in salinity tolerance
Physiological responses to abiotic stress in plants exhibit sexual differences. Females usually experience greater negative effects than males; however, little is known about the molecular mechanisms of sexual differences in abiotic stress responses. In the present study, transcriptional responses to salinity treatments were compared between male and female individuals of the poplar Populus yun...
متن کامل